Discrete Mathematics I

B. Math. II
Back-Paper Examination

Instructions: All questions carry ten marks. All graphs are assumed to be simple.

1. Let $n>2$ be an integer. Give an example of an n-regular graph which has no spanning subgraph that is $n-1$-regular.
2. Prove or disprove: If a graph G has no cut edge, then any two distinct vertices v, w are contained in a cycle.
3. If (X_{1}, Y_{1}) and $\left(X_{2}, Y_{2}\right)$ are minimum cuts in a transportation network, then prove that ($X_{1} \cup X_{2}, Y_{1} \cap Y_{2}$) is also a minimum cut.
4. Prove that a graph is bi-partite if and only if it does not contain a cycle with odd number of vertices.
5. Let G be a graph on 10 vertices that is NOT connected. Prove that G has at most 36 edges. Can equality hold?

6 . Let $k \leq n$ be two integers. Prove that a $k \times n$ Latin rectangle can be completed to a Latin squaye of order n.
7. Let $N(n)$ denote the maximum number of pairwise orthogonal Latin squares of order n. Prove that if $n>1$, then $N(n) \leq n-1$.
8. Prove that in any non-trivial Steiner system $S(t, k, v)$, we must have

$$
v \geq(t+1)(k-t+1)
$$

9. Let $t \geq 2$. For any t design with b blocks and v points, prove that $b \geq v$.
10. Let n be a prime power. Construct a $2-\left(n^{2}+n+1, n+1,1\right)$ design.
