Discrete Mathematics I

B. Math. II

Back-Paper Examination

Instructions: All questions carry ten marks. All graphs are assumed to be simple.

- 1. Let n > 2 be an integer. Give an example of an *n*-regular graph which has no spanning subgraph that is n 1-regular.
- 2. Prove or disprove: If a graph G has no cut edge, then any two distinct vertices v, w are contained in a cycle.
- 3. If (X_1, Y_1) and (X_2, Y_2) are minimum cuts in a transportation network, then prove that $(X_1 \cup X_2, Y_1 \cap Y_2)$ is also a minimum cut.
- 4. Prove that a graph is bi-partite if and only if it does not contain a cycle with odd number of vertices.
- 5. Let G be a graph on 10 vertices that is NOT connected. Prove that G has at most 36 edges. Can equality hold?
- 6. Let $k \leq n$ be two integers. Prove that a $k \times n$ Latin rectangle can be completed to a Latin squaye of order n.
- 7. Let N(n) denote the maximum number of pairwise orthogonal Latin squares of order n. Prove that if n > 1, then $N(n) \le n 1$.
- 8. Prove that in any non-trivial Steiner system S(t, k, v), we must have

$$v \ge (t+1)(k-t+1)$$

- 9. Let $t \ge 2$. For any t design with b blocks and v points, prove that $b \ge v$.
- 10. Let n be a prime power. Construct a $2 (n^2 + n + 1, n + 1, 1)$ design.